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Summarising the data 

In this section, examples of how to summarise and display data are provided, and where possible, 

worked examples are provided of the appropriate statistical analysis. This section is an outline of 

the likely types of analysis used for invertebrate conservation studies rather than an exhaustive list. 

The analysis of each study will depend on the study design, type of data and the hypothesis being 

tested rather than on the trapping methods used. It is strongly recommended that statistical advice 

is sought early to check that the study design is appropriate and that you will have enough samples 

to conduct meaningful statistical analysis. Once the data have been collected, they will need to be 

checked carefully for specific one-off errors (e.g. writing the same plot number down twice when 

collecting the data) and for systematic errors (e.g. taking too few samples each time) which limit the 

statistical power of the data. Once the data have been summarised using tables and graphs, it is 

sensible to again seek formal statistical advice to help with the analysis. The most common way to 

summarise the data is to use a spreadsheet such as those available in Excel or R. It is important 

not to combine any of the data points (e.g. lumping all of the data from a grid of pitfall traps) until 

you have had advice from a statistician, as it is sometimes difficult to split data retrospectively. Your 

statistician may ask for the data to be set out in a specific way on the spreadsheet and it saves time 

(and money) if you can prepare the data accurately, ready for analysis. An example of a properly 

formatted data sheet for a replicated study is provided in Appendix A. Remember not to indicate 

missing data or blank cells with zero (as zero is a valid data point). A key is provided in Appendix B 

to help determine which statistical test to use (Crawley 2002). 

Although the examples provided are based on real projects undertaken by DOC or other 

researchers, some of the scenarios and the data have been manipulated to demonstrate the 

analysis. It is therefore NOT appropriate to cite these studies or the data in other documents unless 

they are accompanied by references. 

Calculating sample size (n)  

The sample size will be used extensively in your calculations. Sample size (n) is the number of 

independent sampling units (e.g. number of traps or the number of treatments if it is a replicated 

study). For example, if you wanted to see whether the abundance of beetles differs between two 

sites with 15 pitfall traps in each area, the sample size would be n = 15 in each site. 

Arithmetic mean 

The mean value is sometimes referred to as the average. Mean values are the basic building blocks 

of your data summary and statistical analysis. The mean can be calculated by summing the number 

of individuals and dividing by the sample size (or number of observations).  

χ = ∑ (x1 + x2 + x3 ....)/n 
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For example, the mean number of snails observed in quadrats on one occasion can be calculated 

as follows.  

 χ = ∑ (4, 5, 2, 0, 5, 7, 21, 11, 4, 6, 6, 3, 7, 4, 5)/15 

 χ = 6 

Median 

The median is a measure of central tendency used to describe the middle value when the data is 

put into rank order. For example, the median value for the snail data presented is calculated as 

follows: 0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 11, 21. In this case there are two values in the middle (5, 5). 

In this case you add the two values together (5 + 5) and divide by 2 (10 ÷ 2 = 5). NB:  If your data is 

normally distributed the mean value will be similar to the median value. 

Range 

This is simply the values that the data lie between. For example, the range of the snail data above 

(4, 5, 2, 0, 5, 7, 21, 11, 4, 6, 6, 3, 7, 4, 5) is 0–21. The range is often given in association with mean 

values and gives an indication of how variable the data is. See table 5 in Eason et al. (1993) if you 

would like to see an example of how the range is presented as part of a statistical analysis. The 

Excel Analysis Toolpak gives the range as a single figure (the difference between the highest and 

lowest number). In our example this would be 21.  

Distribution of the data 

Before deciding on what type of statistical tests are available to you, it is important to know whether 

your data is normally distributed and follows a typical bell-shaped curve (Fig. 1).  

 

Figure 1. The distribution of data that fits a normal or bell-shaped curve where 95% of the observations fall 

within 1.96 standard deviations of the mean.  

Some statistical tests are better suited to normally distributed data or data that can be normalised 

by transformation (parametric tests) and some are better suited to skewed data (nonparametric 
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tests). Your statistician will be able use a ‘goodness of fit’ test to determine whether your data are 

normally distributed and which test is most appropriate. The first step in determining whether your 

data are normally distributed is to graph them as a histogram so you can immediately see if they 

have an approximate bell-shaped curve or not. Count data (whole numbers, such as number of 

trees in an area) will follow a Poisson distribution (very skewed with lots of zeros) if counts are 

mostly small (0, 1, 2). Here the mean is approximately equal to the standard deviation. The 

standard deviation describes how far the data spread from the measure of central tendency. It is 

commonly used to describe data as it is presented in the same units as the original measurements. 

When the data are normally distributed, 95% of the data (or observations) will fall within 1.96 

standard deviations of the mean leaving 2.5% on the left side of the bell shaped curve and 2.5% on 

the right side of the bell shaped curve.  

Useful tips on understanding standard deviation are available at http://statistics-help-for-

students.com/What_are_measures_of_central_tendency_and_dispersion.htm#.VrPDQLJ97b0 

With larger counts the distribution becomes binomial (less skewed) and if counts are sufficiently 

large (lots of counts in the range of 10 or more) the binomial distribution starts approaching the 

normal distribution. There are specific statistical methods for treating data from each of these 

distributions. In general, the larger your sample size the more confident you can be that your data 

will be normally distributed and that you can use parametric tests. As a ‘rule of thumb’ if your 

sample size is less than 30 then the distribution of your data becomes more important.  

Displaying summary data (tables, histograms, box and whisker plots, scatter 

plots)  

Explore the data you have collected using graphs to first identify patterns, trends and potential 

relationships before you start using a statistical test. It is also important to summarise the mean 

values and provide an indication of the variability within the data. The most common way to 

summarise data is in a table or in a graph using a program such as Excel or R. In Excel you can get 

an overall summary of your data by going to: ‘Tools > Data Analysis > Descriptive Statistics’. This 

also provides a summary for each column (or row) of your data including mean, median, mode, 

standard deviation, range, maximum and minimum, and 95% confidence intervals. Histograms 

showing mean values for each invertebrate group are a good place to start. You can add error bars 

(or 95% confidence intervals) to each of the mean values. Large error bars indicate that there is 

high variability in your data and that your sample size (number of traps) might be too small to 

provide meaningful data. The degree of overlap between the error bars can also give an indication 

of whether there is a significant difference between your mean values. If the standard error bars 

overlap, the means are not likely to be significantly different at p < 0.05 level.  

In the example provided (Fig. 2), there is overlap between the error bars at distances of 10–70 m 

suggesting that there is no significant difference in katipō numbers recorded at these distances. 

Similarly there is no overlap in the error bars between katipō numbers recorded between 80–100 m 

from the shoreline. A summary statement about the data would include a comment that there 

appears to be significantly fewer katipō recorded at distances > 70 m from the shore. A statistical 

test can confirm this for you.  

http://statistics-help-for-students.com/What_are_measures_of_central_tendency_and_dispersion.htm#.VrPDQLJ97b0
http://statistics-help-for-students.com/What_are_measures_of_central_tendency_and_dispersion.htm#.VrPDQLJ97b0
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NB: If the data are normally distributed (see Fig. 1) and the standard error bars overlap then this 

means that there is no significant difference between the means, but if the data are not normally 

distributed then either a more sensitive test is required or a transformation should be applied to the 

data to normalise them before they are graphed. 

 

Figure 2. The mean number of katipō spiders recorded at increasing distances from the shoreline over a 5-

year period at Kaitorete Spit in Canterbury, New Zealand (I = standard error). 

Line graphs are a good way to present data showing changes over time (temporal patterns). You 

can add error bars and 95% confidence intervals to this type of graph using Excel. A good example 

of this type of data is given in Powlesland et al. (2005).  

In the following example, Flax snails (Placostylus hongii) were monitored over a 13-year period 

between 1996 and 2008 at Peach Cove in Northland. Ten randomly chosen transects, each 25 m 

long, were placed through the snail habitat. Circular plots (1 m diameter) were placed at 5 m 

intervals along each transect to assess snail abundance. The results are presented as a line graph 

with standard errors associated with each data point shown (Fig. 3). 
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Figure 3. Change in density of live Placostylus hongii snails at Peach Cove. Standard error bars are shown. 

Adult and juvenile results are jittered (offset) for clarity. 

Box and whisker plots are another way of graphically representing your data. They are more suited 

to data with few variables but give an indication of the interquartile range of the data (the box 

showing the upper quartile above which 25% of the data lie and the lower quartile above which 75% 

of the data lie) and the standard error (the whiskers). Good programs to produce this type of chart 

are R or SPSS.  

Many studies focus on the beetle fauna since they represent a range of trophic levels, they are 

better known taxonomically than other groups and thought to reflect the diversity of other 

invertebrate groups (Hutcheson et al. 1999). Data collected from inventory studies can be 

presented so that the beetle fauna is divided into three main trophic levels: predators, herbivores 

and detritivores (these may be divided further depending on the scope of the study). This gives 

coarse information about the beetle community composition and the complexity of the habitat that 

they were collected from. In the example provided (Fig. 4) the beetle community has been divided 

into four trophic levels and compared between pasture, young kānuka, old kānuka and mature 

forest (Dugdale & Hutcheson 1997). 
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Figure 4. The percentage functional composition of the coleopteran communities occupying pasture (P1, P2, 

P3), young kānuka (KY1, KY2, KY3), old kānuka (KO1, KO2, KO3) and three mature forest sites (F1, F2, F3) 

in the Gisborne region (Dugdale & Hutcheson 1997). 

Scatter plots offer a diagrammatic way of displaying relationships between data, especially if you 

suspect there is a cause and effect relationship. For example, there may be reason to suspect a 

relationship between distance from a forest edge and temperature in the following scatter plot (Fig. 

5).  
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Figure 5. The relationship between distance and temperature recorded at increasing distances from the edge 

of a beech forest in January 2007 in the Lewis Pass. 

It is also possible to fit a trend line to a scatter plot but this is usually done when examining a 

relationship using regression analysis.  
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P-value 

A P-value is an estimate of the probability that a result could have occurred by chance, e.g. a 1 in 

20 chance of happening is P = 0.05 (i.e. 1/20) and a 1 in 100 chance of happening is P = 0.01 

(1/100). 

Significance, p-values and errors  

In statistics, ‘significant’ means that a result is unlikely to have occurred by chance. The general 

agreement of ‘unlikely’ is that an event is unlikely if it happens less than 5% of the time—i.e. less 

than 1 chance in 20. Let us say your test result was P = 0.02. This means there is a 2% chance that 

the outcome of the experiment could have occurred by chance so therefore the null hypothesis (that 

there is no difference between the means) is rejected. We state this as ‘there was a significant 

difference between the means’. If the test result was, say, P = 0.12 then (as this is greater than P 

= 0.05) the test showed no significant difference.  

Type I and Type II errors 

Remember that significance is about chance. A test result of P = 0.05 still means that there is a 1 in 

20 chance of making an error or accepting the null hypothesis when it is in fact wrong. The 

downside to this is that as you make it less likely to make an error in accepting the null hypothesis 

(by making the threshold of acceptance of the p-value smaller) you make it more likely that you will 

make an error in the reverse direction—in other words, by accepting the null hypothesis when the 

true situation is false. If we happen to know if a null hypothesis was true or false, then the errors we 

can make are shown below. 

Null hypothesis Actually true Actually false 

Accept Correct decision Error (Type II) 

Reject Error (Type I) Correct decision 

Variability in the data (SE and/or 95% CI)  

The degree of variability in the data is considered to be a measure of how reliable or robust the data 

is. Studies with small sample sizes tend to show more variability and the results are therefore less 

reliable. The variability is most commonly reported in association with the mean. The two most 

common measures are the standard error (SE) and 95% confidence intervals (95% CI). Both 

indicate the dispersion of a distribution or the range of values that your means lie within. They can 

be easily calculated using an Excel spreadsheet (NB: Excel refers to the mean as ‘average’) or 

using R. The standard error of the mean can be calculated using the standard deviation as follows: 

n
SE


  where σ = standard deviation and n = sample size 
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The 95% confidence interval is calculated from the standard error of the mean and is considered to 

be a better indication of the robustness of your data. You can be 95% certain that the mean lies 

between the two values generated in the calculation. It is calculated as follows when the sample 

size is greater than about 30:  

 









n
x


96.1

 
where σ = standard deviation, n = sample size, x = mean 

NOTE: Do not use the function ‘=CONFIDENCE()’ in Excel—it does not produce a true confidence 

interval. You can obtain a true 95% confidence interval by going to ‘Tools > Data Analysis > 

Descriptive Statistics’ and ticking the box ‘Confidence Interval for Mean’.  

Species richness and diversity 

Both species richness and diversity are often used in ecological studies, such as assessing 

ecosystem health.  

Species richness is simply the actual number of different species (or varieties) in your collection. 

Diversity is a measure of the number of different species together with the ‘evenness’ with which 

they are distributed (their relative abundance). Invertebrate communities are typically very species 

rich or diverse and most sampling methods will provide a vast number of different species or types. 

There are several key things that you need to keep in mind when sampling invertebrates and 

assessing invertebrate data: 

 You may not be able to identify all of the invertebrates to the same taxonomic level. Your 

analysis will assume that all individuals assigned to a specific taxonomic group are equal 

and interpretation of the data will need to accommodate this. 

 You will often collect many juvenile specimens and because they are sometimes difficult to 

identify, they are often omitted from studies assessing species richness and diversity. 

 Invertebrate communities are characterised by having a few common species and many 

different rare species. While it is important to include the rare species in your assessment of 

species richness and diversity, you may need to omit the rarest species in some data 

analyses (because the numbers will be too few to be meaningful).  

 Species richness increases with sample size. It is possible to determine whether your 

sample size is adequate using a technique called rarefaction.  

Calculating and summarising species richness data 

In its most simple form species richness is simply the total number of different species that you 

collected. Often it is not possible to identify everything to species level, in which case it is 

recommended that you summarise your data at the family level or use morphospecies (species that 

look the same, e.g. species A). These are sometimes known as recognisable taxonomic units 

(RTUs). It may be possible to summarise specific invertebrate groups separately (e.g. you may 

have all of the beetles identified to species level). Using tables to summarise the data or using a 

graph are both good ways of presenting invertebrate species richness. Be mindful that your 
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sampling method has only collected a small proportion of the species that will be occupying the 

habitat.  

Calculating and summarising diversity data 

There are many ways of measuring ecological diversity but it is often calculated by using a diversity 

index. This enables the researcher to describe the invertebrate community mathematically (usually 

with a single figure) and compare diversity between different habitats or measure changes in 

diversity over time. One of the more common measures of diversity is the Shannon index of 

diversity. The assumptions that are made by this index allow it to be used in ANOVA (analysis of 

variance) tests. In the example provided below (Table 1), moths were collected using a sweep net 

from tussock grassland near Burkes Pass, South Island. The table shows how the Shannon index 

can be used to calculate the diversity of moths.  

Table 1. The diversity of moths (Shannon index of diversity) collected in a tussock grassland site, Burkes 

Pass, South Island (‘ln’ is shorthand for loge). 

Moth species Abundance pi pi ln pi 

Orocrambus cyclopicus 96 0.357 −0.368 

Orocrambus flexuosellus 72 0.268 −0.353 

Kiwaia lithodes 21 0.078 −0.199 

Capua semiferana 17 0.063 −0.175 

Plutella psammochroa 15 0.056 −0.161 

Orocrambus vittellus 14 0.052 −0.154 

Eudonia cataxesta 9 0.033 −0.114 

Caloptilia elaeas 9 0.033 −0.114 

Eudonia feredayi 8 0.030 −0.105 

Diasemia grammalis 4 0.015 −0.063 

Metacrias strategica 1 0.004 −0.021 

Scoparia niphospora 1 0.004 −0.021 

Merophyas leueaniana 1 0.004 −0.021 

Phaeosaces apocrypta 1 0.004 −0.021 

 269 1.000 −1.887 

Where the number of species (S) = 14 

Total abundance (N) = 269 

Where pi is the proportional abundance of the ith species = (ni/N)  

Shannon diversity index is H’ = − ∑ pi ln pi  

 = 1.887 
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A possible scenario could be that you wish to examine whether the diversity of invertebrates within 

forest in mainland islands differs from that in forest outside mainland islands. In this case it would 

be sensible to replicate the study by assessing the invertebrate fauna in a minimum of three 

mainland island sites and three sites adjacent to each mainland island (control). Providing care was 

taken to keep the sampling methods the same and the size of each sampling method constant at 

each site (collect the invertebrates under similar weather conditions, time of the year, similar 

amounts of time were spent collecting) this would allow you to compare the invertebrate fauna 

using a statistical test. A histogram of such data would look similar to that presented in Fig. 6. 

 

Figure 6. The diversity of invertebrates (calculated using the Shannon index) in three mainland island sites 

and three adjacent control sites in November, 2003.  

A good guide to using diversity indices with worked examples is provided by Magurran (1988). 

There are many software programs available that summarise and calculate species richness and 

diversity. Species Diversity and Richness is a software package that is easy to follow. Otherwise 

programs such as R (The R Project for Statistical Computing)1 or BioDiversity Pro2 software 

developed by McAleece (1997) may be used. Advice from a statistician will be required to select the 

appropriate model or analysis for your data.  

Rarefaction or species accumulation curves 

Additional sampling of an invertebrate community will nearly always result in an increase in the 

number of invertebrate species that you collect. Suppose that you have 10 samples in each of your 

replicates or study areas. A Monte Carlo randomisation (a procedure available in many statistical 

packages) can be used to randomly reorder your data set, and if this is done repeatedly it will 

demonstrate that the first samples collected will contain a majority of the species you have collected 

                                                
1
 http://www.r-project.org/  

2
 http://biodiversity-pro.software.informer.com/2.0/  

http://www.r-project.org/
http://biodiversity-pro.software.informer.com/2.0/
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and that any additional samples collected will only add a few additional species (usually the rare 

species). The procedure can be used to determine at what point you have collected a majority of 

the species in a community. In the following example, a Monte Carlo randomisation test could be 

used to randomly reorder the invertebrate data 500 times, and then this could be used to calculate 

a mean value for the number of families collected for each sample size. 

 

Figure 7. A rarefaction curve showing the increase in number of taxonomic families collected in Rankleburn 

Forest, Southland, New Zealand, as the number of samples increases.  

Figure 7 indicates that as you increase the number of samples, the number of taxonomic families 

collected increases. The curve is slow to reach an asymptote (where the curve levels off) 

suggesting that more samples would be required to collect a representative indication of the 

number of different invertebrates occupying this forest. This test can used to predict what number of 

invertebrate families you would collect for any given number of samples (or traps). If you were able 

to identify all specimens to species level, you would expect to need even more samples before an 

asymptotic curve was apparent. Rarefaction may overestimate the number of species in a 

community because the equation makes the assumption that the invertebrate fauna is randomly 

dispersed when more often it is aggregated or clumped. Rarefaction is best completed following a 

pilot study to determine the number of samples or traps that are required to adequately sample the 

invertebrate fauna. The test can also be done retrospectively to determine what proportion of the 

invertebrate fauna you might have sampled with the number of traps you have used.  

Important points to raise with a statistician  

 Which parts of your data are lacking in statistical power and can this be remedied by 

grouping aspects of the data? 

 Distribution of the data (parametric or non-parametric tests). 

 What tests are appropriate for the data and are appropriate for the questions or hypotheses 

that you are testing? 

 What conclusions can be drawn from the data and what limitations should be applied when 

interpreting the data? 
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 Are there aspects of the work that could be investigated in the future and what design would 

be appropriate to test these hypotheses? 

Testing for differences between groups of data 

Once the data have been summarised, you may wish to use a statistical test to help you decide 

whether to accept or reject your hypothesis. A significant result in data analysis is usually 

represented as p < 0.05, which indicates that you can be 95% confident that your results haven’t 

occurred by chance (p < 0.001 indicates a higher degree of significance). At this point either consult 

a statistician, or use the following information and the key outlined in Appendix B to determine 

which statistical test to use. Most of the tests outlined can be done in Excel and they are easily 

done in R if you know how to use it. Another option worth investigating is OpenEpi, which is free to 

download3 and provides a robust yet easy-to-use option for simple statistical tests. Note that 

nowadays, many tests are done by modelling data and most of the tests in the key are not used so 

much. However, it does not matter which test you do use, provided that the test is appropriate. Also, 

use the simplest appropriate test—there is no point in using a complex test when a simple one will 

do. 

Comparing two independent sets of data 

Some of the more common questions asked in biology relate to whether one set of data significantly 

differs from another. To answer this, it is necessary to determine whether the mean values are 

significantly different using a two-sample test of difference. 

If the two groups of data are, for example, invertebrate abundance in forest A and invertebrate 

abundance in forest B, and they are both normally distributed, then an independent t-test can be 

completed or a one-way analysis of variance (ANOVA). If your data are not normally distributed, the 

non-parametric equivalent is the Mann–Whitney U test.  

Comparing multiple sets of independent data 

One-way ANOVA can also be used if you have multiple groups of data that are independent and 

normally distributed. The non-parametric equivalent is the Kruskal–Wallis test. Both of these tests 

will enable you to determine whether the means are significantly different but they will not tell you 

which groups are different from which (Dytham 1999). Further investigation using the Fisher’s least 

significant difference test will enable you to tease out which groups are significantly different from 

each other.  

If your study is not univariate (has more than one observed variable), e.g. the interaction between 

invertebrate abundance and factors such as plant richness or temperature, a multivariate ANOVA is 

required. 

                                                
3
 http://www.openepi.com/Menu/OE_Menu.htm  

http://www.openepi.com/Menu/OE_Menu.htm
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Test of difference for paired data 

The data may be paired, e.g. invertebrate abundance before and after predator control and the null 

hypothesis to be tested would therefore be that there is no difference in invertebrate abundance 

between the two groups. Tests such as the t-test are often used but do require the data to be 

normally distributed (an equivalent non-parametric test would be Wilcoxon’s signed ranks test). 

Non-parametric tests can be a useful check to see if the results concur with the parametric test. A 

simple test to give an indication of whether there are significant differences between large paired 

data sets is the sign test. This is essentially done by creating two columns of data and looking to 

see if there is a consistent pattern of high v. low values. The ‘BinomDist’ function in Excel will 

calculate the probability of this occurring. 

Tests of difference for repeated measures data 

If you have multiple groups of data such as invertebrate abundance monitored over a number 

years, this can be treated as an extension of paired data and is called repeated measures analysis 

(Dytham 1999). The Friedman test is the non-parametric equivalent (Dytham 1999). 

Testing variables for correlation and association 

Correlation 

The chi-square test of association can be used on categorical data (qualitative), e.g. where the size 

of invertebrates was scored as large, medium, small. It is used to determine whether there is a 

relationship between the categories or not. As with other chi-square tests, it is the difference 

between the observed and expected frequencies in each of the categories that is important. The 

test cannot be used with percentages. 

Pearson’s product-moment correlation (parametric test) or Spearman’s rank (non-parametric test) 

can be applied if you need to test for an association between variables to which a numerical value 

has been given. For example, a study of grasshopper mate pairs was undertaken to determine 

whether there is a size association—i.e. do large females attract larger males (Table 2). 
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Figure 8. Phaulacridium grasshoppers copulating on river beds in the Mackenzie Basin. 

Table 2. Results from a survey of 10 grasshopper pairs in the Mackenzie Basin to determine whether male 

and female sizes in copulating pairs were correlated. 

Grasshopper pair Male length (mm) Female length (mm) 

1 6 17 

2 5 12 

3 7 20 

4 8 18 

5 5 13 

6 6 16 

7 6 16 

8 5 13 

9 7 21 

10 5 12 

In this example a correlation value of r = 0.87 was obtained using the Analysis Toolpak in Excel. 

This value suggests that there is a strong positive relationship between the sizes of grasshoppers 

copulating. The r2 = 0.76 suggests that 76% of the variation in the size of grasshoppers of one sex 

is explained by the size of the other. 

Standard linear regression  

Standard linear regression determines the strength of a relationship between two variables. Initial 

examination as well as presentation of these variables can be done with a scatter plot. Linear 

regression produces a ‘best fit’ line drawn through a set of points defined by the two variables, e.g. 

temperature v. distance from the forest edge. Regression also provides measures of the slope of 

the line and whether it is significantly different from zero. To use regression successfully, you need 

to be sure that you know which variable is the ‘predictor’ or ‘cause’ variable. Regression also 

assumes that the ‘predictor’ variable has been measured with minimal variability. In our example, 
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distance from the forest edge is the predictor variable. Regression lines are typically presented with 

associated 95% confidence intervals and can be calculated using the Analysis Toolpak in Excel and 

other statistical packages like R. Regression lines are often reported with an r2 value, which gives 

an indication of the amount of associated variability.  

 

Figure 9: The relationship between temperature recorded at increasing distances from the edge of a beech 

forest in January 2007 in the Lewis Pass, New Zealand. 

A regression line showing the relationship between temperature and distance from the forest edge 

has been fitted to the data. 

In this example (Fig. 9) the r2 = 0.87 and this means that 87% of the variation in temperature can be 

explained by the regression line. The output produced by using regression analysis also gave 

P < 0.001, so a highly significant amount of the variation in temperature is explained by distance 

from the forest edge. The output also confirmed a negative relationship between the variables 

meaning that temperature decreases as distance from the forest edge increases.  

Multiple regression
 

Multiple regression is an extension of linear regression to more than one ‘predictor’ variable. The 

assumption with multiple regression is that the ‘predictor’ variables have been measured with 

minimal variability and that they are clearly independent of each other. Often the ‘predictor’ 

variables can be confounded or show some correlation and it is recommended to make allowances 

for this when interpreting the results from a multiple regression. For example, the variables 

temperature v. distance from forest edge v. density of vegetation may not be considered to be 

independent. This analysis is not suitable for repeated measures, e.g. monitoring done on annual 

basis on the same plots. A three-dimensional scatter plot is recommended to display this type of 

data and any additional ‘predictor’ variables will need to be represented separately.  
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Choosing which variables to keep or drop from your model 

Most modern statistical packages enable a variety of methods for selecting the best subsets of 

explanatory or predictor variables. Stepwise regression allows more flexibility on which ‘predictor’ 

variables are more important (produces lines with slopes that provide a better fit to the data points), 

and therefore which variables are better at explaining the effects in your study. Guidance on the 

most appropriate model to select can be found at the following websites: 

 http://www.geog.ucsb.edu/~joel/g210_w07/lecture_notes/lect20/oh07_20_2.html 

 http://www.palgrave-journals.com/jt/journal/v18/n1/full/jt200926a.html  

Consultation with a statistician will help you choose the most suitable method for selection of your 

final model.  

Exploring data for relationships 

One approach to conservation of threatened ecosystems is to identify a suite of taxa or indicator 

species whose diversity can be used to predict the diversity of others (Cranston & Trueman 1997). 

Because invertebrates are often specific to certain environmental conditions, are linked to 

ecosystem processes, and are abundant, they make useful indicators. Some species respond to 

environmental change more than others or have particular attributes that makes them useful for 

signalling changes in the ecosystem or for monitoring environmental conditions (Hutcheson et al. 

1999). The methods used to determine which species are closely related to environmental variables 

and thus make good indicator species are varied. Multivariate methods (which involve exploring the 

data using multiple variables) include direct gradient analysis (regression) and indirect gradient 

analysis (ordination) as well as classification (cluster analysis). Both direct and indirect gradient 

analysis arrange the sites and/or species data along environmental gradients (Palmer 1993). There 

are a number of programs available to explore the relationships between communities and 

environmental factors or determine whether particular groups of species are useful indicators. 

These include statistical packages such as R, PC-Ord and CANOCO.  

Principal component analysis  

Principal component analysis (PCA) is similar to regression and shows which variables contribute 

most to the differences between individuals rather than groups. The method weights all of the 

variables so that it is possible to discriminate between the individuals that have been assessed. The 

data have to be normally distributed so the method is not suitable for use with ecological factors. 

PCA can be used when two or more dimensions have been measured for individual species. For 

example, the length and width of invertebrates are measured and assessed at varying altitudes on 

a mountain range. PCA might determine that invertebrate length is the main thing affected by 

altitude and that the width of the invertebrate is secondary. The output of the analysis shows the 

weightings that are the strongest, the eigenvalues, which are the degree of relatedness to the 

variables (or how important the principle axes are), and the position of the individual species along 

the axis (vertical or horizontal).  

http://www.geog.ucsb.edu/~joel/g210_w07/lecture_notes/lect20/oh07_20_2.html
http://www.palgrave-journals.com/jt/journal/v18/n1/full/jt200926a.html
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Canonical correspondence analysis 

Canonical correspondence analysis (CCA) is a method that enables exploration of relationships 

between invertebrate communities and environmental variables. It is a computer-generated 

ordination that weights all of the available data against given variables. CCA presents the 

correlation of species and sites with environmental variables as points in ordination space. It is an 

indirect gradient analysis. It assumes that a community of species are responding to environmental 

gradients and can be used to determine to what extent the environmental gradients explain 

variation in the species data (ter Braak 1986). Neumegan (2006) assessed the invertebrate fauna 

using pitfall-flight-intercept traps across gradients between native forest and pasture and between 

native forest and pine plantations. In her study, she used CCA to demonstrate the effect of distance 

from the forest edge on invertebrate composition. 

Figure 10 was generated using the software package CANOCO (ter Braak 1986). These are the 

results from a study of invertebrates in beech forest, beech forest invaded by Douglas fir, and 

Douglas fir-only forest at three locations in the South Island. Each number (1–9) represents the 

invertebrates collected at each of the three sites and in each forest type. Other variables that were 

measured included the amount of canopy cover, the number of Douglas fir cones, understory plant 

richness, and associated vegetation cover types (moss, leaf litter, vascular cover, coarse woody 

debris). This analysis gives an indication of which variables might be influencing the invertebrate 

community at each of the sites. 
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Figure 10. CCA ordination of the invertebrates collected in pitfall traps over a 2-week period at three forests 

and three forest types (Rankleburn Forest = 1, 2, 3; Burnt Face Forest = 4, 5, 6; Hira Forest = 7, 8, 9) in New 

Zealand and associated environmental variables.  

The location of site scores (1–9) relative to the arrows indicates the environmental characteristics of 

the sites (Palmer 1993). The environmental variables are presented as arrows and the length of an 

arrow indicates the strength of the inferred correlation or the importance of the environmental 

variable (Humphrey et al. 1999). The arrowhead represents the high value for that variable while 

the medium value is at the centre of the axes. The direction of the arrow shows how the 

environment is correlated with the abundance of various species or sites and the angle between 

arrows indicates the correlation between the environmental variables (e.g. in our example moss and 

vascular cover are correlated). There is also an option in this program to plot all of the individual 

invertebrate species collected to see which invertebrate species are most ‘influenced’ by the 

environmental variables. The main limitation of this method is that outliers (atypical data) are not 

allowed for and can influence the analysis. 

TWINSPAN 

TWINSPAN (two-way indicator species analysis) is a program also used to explore the relationships 

between species abundance and environmental variables. The cluster analysis was designed to 

characterise habitats using indicator species (Hill 1979). It has been used in New Zealand by 

Hutcheson (1990) and Hutcheson & Jones (1999) to explore whether Malaise-trapped beetles 

predict the ecological condition of a habitat. The limitations of this method include an assumption 
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that there is a strong relationship between the invertebrate abundance and the environmental 

variables, and weaker relationships are not considered (Dufrêne & Legendre 1997).  
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Appendix A 

Example of an Excel spreadsheet suitable for statistical analysis showing the total abundance of 

four beetle species collected in 10 pitfall-flight-intercept-traps in four different sites.  

Site 
PF 
trap 

Megadromus 
antarcticus 

Megadromus guerinii 
Mecodema 
oregoides 

Pristoderus 
bakewellii 

1 1 1 0 3 15 

1 2 5 1 6 12 

1 3 3 5 2 10 

1 4 8 0 6 9 

1 5 6 0 5 8 

1 6 2 0 5 6 

1 7 4 5 2 13 

1 8 2 2 4 5 

1 9 1 3 2 6 

1 10 3 6 4 2 

2 1 5 0 2 15 

2 2 9 1 6 14 

2 3 6 2 3 12 

2 4 5 1 3 11 

2 5 8 1 3 9 

2 6 7 1 3 12 

2 7 2 0 3 13 

2 8 4 0 2 12 

2 9 6 2 1 5 

2 10 6 0 2 8 

3 1 3 2 1 14 

3 2 5 1 2 15 

3 3 8 0 1 19 

3 4 2 1 0 11 

3 5 9 1 0 16 

3 6 7 1 5 9 

3 7 7 0 2 15 

3 8 4 2 3 3 

3 9 3 1 1 8 

3 10 2 0 3 8 

4 1 5 1 3 10 

4 2 5 0 2 9 

4 3 6 1 5 11 

4 4 9 0 2 9 

4 5 8 0 4 23 

4 6 4 3 2 15 

4 7 1 2 2 11 

4 8 2 1 2 8 

4 9 5 1 0 7 

4 10 8 1 1 12 
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Appendix B 

Key to using classical statistical tests (Crawley 2002). 

1. Explanatory variables all categorical ............................................................................... 2 

 At least one explanatory variable a continuous measurement ......................................... 4 

2. Response variable a count ........................................................... use a contingency table 

 Response variable not a count ........................................................................................ 3 

3. Response variable a continuous measurement ............................ use analysis of variance 

 Response variable other than this ............................................... use analysis of deviance 

4. All explanatory variables continuous .......................................................... use regression 

 Response variables both continuous and categorical ............... use analysis of covariance 

5. Response variable continuous .................................................. use regression or Ancova 

 Response variable a count ..................................... use log-linear models (Poisson errors) 

 Response variable a proportion .................................. use logistic model (binomial errors) 

 Response variable a time at death .................................................... use survival analysis 

 Response variable binary ........................................................ use binary logistic analysis 

 Response variable is time ............................................................ use time series analysis 
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